Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion
نویسندگان
چکیده
The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.
منابع مشابه
Anaerobic Biodegradation of Alternative Fuels and Associated Biocorrosion of Carbon Steel in Marine Environments.
Fuels that biodegrade too easily can exacerbate through-wall pitting corrosion of pipelines and tanks and result in unintentional environmental releases. We tested the biological stability of two emerging naval biofuels (camelina-JP5 and Fischer-Tropsch-F76) and their potential to exacerbate carbon steel corrosion in seawater incubations with and without a hydrocarbon-degrading sulfate-reducing...
متن کاملAn evaluation of carbon steel corrosion under stagnant seawater conditions.
Corrosion of 1020 carbon steel coupons in natural seawater over a 1-year period was more aggressive under strictly anaerobic stagnant conditions than under aerobic stagnant conditions as measured by weight loss and instantaneous corrosion rate (polarization resistance). Under oxygenated conditions, a two-tiered oxide layer of lepidocrocite/goethite formed. The inner layer was extremely tenaciou...
متن کاملOxygen Effects on Biodegradation of Fuels in a Corroding Environment
Experiments were designed to evaluate biodegradation of plantand petroleum-based fuels and blends exposed to seawater under anaerobic conditions. The experimental set-up included natural aerobic seawater, fuel and unprotected carbon steel coupons, simulating a potential fuel storage situation. Corrosion was due to microbiologically produced sulfides reacting with carbon steel. There were few di...
متن کاملThe genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth.
Biochemically, the syntrophic bacteria constitute the missing link in our understanding of anaerobic flow of carbon in the biosphere. The completed genome sequence of Syntrophus aciditrophicus SB, a model fatty acid- and aromatic acid-degrading syntrophic bacterium, provides a glimpse of the composition and architecture of the electron transfer and energy-transducing systems needed to exist on ...
متن کاملThe effects of the combination of bioplastic and its degrading bacteria (Genus Acidovorax) on the metabolic activity of anaerobic bacteria in Siberian sturgeon (Acipenser baerii) fingerlings hindgut by using CLPP
Community Level Physiological Profiles (CLPP) is novel method to evaluate microbial activity and diversity in ecosystems. According to the previous findings, poly-β-hydroxybutyrate (PHB) as a bio-control product, increases bacterial diversity in some aquatic animals. In this study, the effects of four experimental diets (control, combination of two PHB degrading bacteria, 2% PHB, bacteria+ 2% P...
متن کامل